If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-24r+72=0
a = 1; b = -24; c = +72;
Δ = b2-4ac
Δ = -242-4·1·72
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-12\sqrt{2}}{2*1}=\frac{24-12\sqrt{2}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+12\sqrt{2}}{2*1}=\frac{24+12\sqrt{2}}{2} $
| t=13/12t | | t=1312t | | x=1+0.5*x | | | | | | x^2+x-40.25=0 | | X²+x-40.25=0 | | 4n-14=7 | | 20+x=2(4+x) | | 10x-3=8x+22 | | 4x+7=3x+25 | | 2/3x-2x=8 | | 45=3x-10=2x+10 | | 7x+1.5x-13.5=0 | | 4x/7=-5-3x | | -x/3=x-11 | | -x/2=12-x | | x/5=-6(x+28) | | 50^2+120^2=c2 | | x/5=15-x | | 8y-5y-3+9=y+y+3-7 | | x/4=5(x-11) | | 61=40+7y | | -4x-17=147-22x | | 61=5×8+7y | | Y-3=4/7(x+-3) | | Y-3=4/7(c | | x²-x-360=0 | | 7(x-6)=2x-3 | | 14+3n=6-n | | -y+13=45+y | | 9(3x+1)=11 |